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An inertial Brownian motor with time-delayed feedback driven by an unbiased time-periodic force is inves-
tigated. It is found that the mean velocity and the rectification efficiency are decreased when the noise intensity
is increased. While the shape of the mean velocity and the rectification efficiency can be changed from one
peak to two peaks when the time delay is increased, the symmetry in the velocity probability distribution
function is broken when the delay time is increased.
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I. INTRODUCTION

In recent years, the stochastic systems with the time-
delayed feedback have been investigated both theoretically
and experimentally �1–18�. The properties of the time
delay on the systems have been extensively discussed,
for example, stochastic resonance with delayed interactions
�19–22�, synchronized and coordinated movements with
time delay �23–25�, laser systems with optical feedback
�26–33�, feedback-regulated voltage-controlled oscillators
�34–37�, etc. In these systems, the time delay arises mainly
due to a finite transmission speed of matter, energy, and
information.

Though the study of the noise-induced transport of
Brownian motors has been widely investigated �38–41�,
much attention on ratchet has been focused on the way of the
directed current �42� and the maximum of the efficiency
�43�. However, in most of the previous investigations on
Brownian motors, the time-delayed feedback is not included
in the systems. Meanwhile, the efficiency is confined to the
Brownian motor with external force F and based on the ratio
of the work done by the particle against the external load
and the input power �44–47�. Recently, the notion of the
rectification efficiency is presented to discuss the efficiency
in the absence of the external bias forces �48,49�. Thus, the
Brownian motors with the time-delayed feedback need to be
investigated. The effects of the time delay on the transport
and the efficiency of the Brownian motors deserve further
discussion.

In this paper, an inertial Brownian motor with time-
delayed feedback driven by an unbiased monochromatic
time-periodic force is investigated. In Sec. II, the theoretical
model of the inertial Brownian motor with the time-delayed
feedback is presented. In Sec. III, the effects of the noise
intensity and the time delay on the mean velocity and the
rectification efficiency are discussed. In Sec. IV, the effects
of the time delay on the velocity probability distribution are
investigated. In Sec. V, a wider range of the delay time and
the driving frequency are analyzed. A discussion concludes
the paper.

II. A BROWNIAN MOTOR WITH TIME-DELAYED
FEEDBACK

A Brownian motor with time-delayed feedback driven by
an unbiased time-periodic force follows the Langevin equa-
tion �42,43�

ẍ�t� + �ẋ�t� = − V�„x�t − ��… + a cos��t� + �2�D0��t� ,

�1�

where the dot denotes the differentiation with respect to time
t while the prime denotes the differentiation with respect to
the variable x�t−��. The parameters a and � are the strength
and the angular frequency of the external force, � is the
friction coefficient and D0 is the noise intensity, and ��t� is
the Gaussian white noise with zero mean and variance
���t���s��=��t−s�. In above equation, all the variables are
rescaled and dimensionless.

The asymmetric ratchet potential V(x�t−��) with time-
delayed feedback is given by

V„x�t − ��… = V0�a0 sin„2�x�t − ��… + a1 sin„4�x�t − ��…

+ a2 sin„6�x�t − ��…� , �2�

where a0, a1, and a2 are the coefficients representing the
spatial asymmetry of the potential with a0�a1�a2. These
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FIG. 1. The dimensionless potential V�x� is plotted as a function
of x. The parameters are dimensionless and are chosen as
V0=0.461, a0=1, a1=0.245, a2=0.04. The force corresponding to
this potential ranges between −4.67 and 1.83 �49�.
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coefficients are chosen as a0=1, a1=0.245, and a2=0.04 in
the following discussions.

When there is no time delay with �=0, the potential in Eq.
�2� can be reduced to V�x�=V0�a0 sin�2�x�+a1 sin�4�x�
+a2 sin�6�x��. This potential shape is composed of three
spatial higher harmonics. The potential V�x� as a function of
x is plotted in Fig. 1. The natural direction of the Brownian
motor motion corresponding to the potential is toward to the
negative direction of x, in the direction of the weaker slope
of the potential �49�.

In the most common definition, the efficiency of a Brown-
ian motor yields the result that the efficiency assumes zero
when there is no external force. The rectification efficiency
	, a new definition of the efficiency, is given by the ratio of
the dissipated power ��v�2 associated with the directed mo-
tion of the Brownian motor against the friction, and the input
power from the load forcing �48,49�. It is applicable even if
the external load is absent. The explicit equation of 	 can be
written as

	 =
�v�2

��v2� − D0�
. �3�

Since there is no analytic solutions that can be
obtained from Eq. �1�, only numerical computations are
performed.

III. MEAN VELOCITY AND RECTIFICATION
EFFICIENCY

The mean velocity �v� and the rectification efficiency
	 are analyzed by integrating Eqs. �1�–�3�. The Euler method
is used in the numerical calculations with a time step of

t=10−3. The initial condition of x�t� is taken from a uni-
form distribution over the dimensionless period L=1 of the
ratchet potential and the initial condition of v�t� is chosen at
random from a symmetric, uniform distribution over the in-
terval �−1,1�. The data obtained were averaged over 500
different trajectories and each trajectory evolved over
4.5�104 periods.

The mean velocity �v� as a function of the driving force
strength a, the white noise strength D0, and the delay time �
is plotted in Fig. 2. Figures 2�a� and 2�b� are plots of �v� as
functions of a and D0. From Figs. 2�a� and 2�b�, it is seen
that for small value of D0, the Brownian motor reaches the
maximum speed at about a	6.0. When D0 is increased, the
maximum speed is reduced and the reversal of the directed
current appears. The mean speed reaches its negative ex-
treme at about a	3.4. When D0 is increased further, the
negative extreme at a	3.4 is increased and the positive
maximum at a	6.0 is decreased. It is seen that the motion
of the Brownian motor is bounded when the driving force is
small with a�2.5. The inertial Brownian motor predomi-
nantly dwells in a potential well even when the noise distur-
bance is present. The averaged directed current is very small
due to the fact that the escape jumps between the neighbor-

FIG. 2. The mean dimensionless velocity �v� of a delayed
Brownian motor is plotted as a function of the driving force
strength a, the white noise strength D0, and the delay time �. The
parameters are dimensionless and are chosen as V0=0.461, �=0.9,
�=4.9. �a� Three-dimensional plot of �v� as functions of a and D0

when �=0.01. �b� The mean velocity �v� as a function of a when
�=0.01 and D0 is varied. �c� Three-dimensional plot of �v� as func-
tions of a and � when D0=0.01. �d� The mean velocity �v� as a
function of a when D0=0.01 and � is varied.

FIG. 3. The dimensionless rectification efficiency 	 of a delayed
Brownian motor is plotted as a function of a, D0, and �. The pa-
rameters are dimensionless and are chosen as V0=0.461, �=0.9,
�=4.9. �a� Three-dimensional plot of 	 as functions of a and
D0 when �=0.01. �b� The efficiency 	 as a function of a when
�=0.01 and D0 is varied. �c� Three-dimensional plot of 	 as func-
tions of a and � when D0=0.01. �d� The efficiency 	 as a function
of a when D0=0.01 and � is varied.
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ing wells are rare. The input energy is transferred to the
kinetic energy of the intrawell motion and finally dissipates.
When the driving force is increased for a�2.5, the Brown-
ian motor generates the directed transport behavior. It is seen
that the noise disturbance may enhance the directional mo-
tion of the particle to the weaker slope of the potential and
yield negative current. The negative current is increased
when the noise disturbance D0 is increased. When the driv-
ing force exceeds the upper threshold amplitude of the
ratchet force at a
4.66, the Brownian motor begins to move
towards positive value of x, reaching the maximum speed
near a	6.0. Above this driving strength, the averaged veloc-
ity begins to decrease because of the weakening influence of
the ratchet potential �49�. It seems that the negative velocity
is caused by the noise disturbance; the increased noise dis-
turbance may reduce the mean positive velocity and increase
the mean negative velocity.

Figures 2�c� and 2�d� are the plots of �v� as functions of a
and �. From Figs. 2�c� and 2�d�, it is seen that there is a
single peak in �v� for small �. The peak is located at about
a	6.0. The curve of �v� is changed from one peak to two
peaks when � is increased. The two peaks in �v� are located
at about a	3.0 and a	6.0. When � is increased, the two
peaks in �v� are reduced to one peak again. The position of
the peak in �v� is located at small value of a. When � is
increased further, the height of the peak is increased and the
position of the peak is shifted to smaller value of a. Mean-
while, the reversal of the directed current appears. There is a
negative extreme in �v� close to a=0. The negative extreme

in �v� is increased as � is increased. It is clear that the time
delay in the potential can induce rich phenomena in the mean
velocity of the Brownian motor. For small delay time, there
are single or two peaks in �v� of positive current. When the
driving force strength is small, the inertial Brownian motor
predominantly dwells in a potential well with very small
negative velocity. The increased delay time may enhance the
particle to move left, which leads to the increased negative
current at a=0. When the driving force strength is increased,
the increase of the delay time may stimulate the particle to
move towards both directions. For large delay time, the posi-
tive peak in �v� is shifted to a small value of driving force
and a negative peak appears close to a=0. It is seen that the
particle may move towards the negative direction of x with
large delay time even though there is no external load force.
Thus, the particle with larger delay time may reach both
maximum negative and positive speeds at smaller driving
force strength.

The rectification efficiency 	 as a function of the driving
force strength a, the white noise strength D0, and the
delay time � is plotted in Fig. 3. Figures 3�a� and 3�b� are the
plots of 	 as functions of a and D0. From Figs. 3�a� and 3�b�,
it is seen that there is a major peak located at a	6.0 in the
curve of 	. The height of the peak is decreased as D0 is
increased. There is a tiny peak located at a	3.4. It seems
that the rectification efficiency of the delayed Brownian mo-
tor is decreased with increasing value of the noise strength
D0.

Figures 3�c� and 3�d� are the plots of 	 as functions of a
and �. From Figs. 3�c� and 3�d�, it is seen that the curve of 	
are changed from single peak to two peaks when the delay
time � is increased. For small value of �, there is a peak

FIG. 4. The dimensionless velocity probability distribution P�v�
is plotted as a function of the velocity v and the delay time �. The
parameters are dimensionless and are chosen as V0=0.461, �=0.9,
�=4.9, D0=0.01. �a� Three-dimensional plot of P�v� as functions
of v and � when a=0. �b� The velocity distribution P�v� as a func-
tion of v when a=0 and � is varied. �c� Three-dimensional plot of
P�v� as functions of v and � when a=2.5. �d� The velocity distri-
bution P�v� as a function of v when a=2.5 and � is varied.

FIG. 5. The dimensionless phase portrait of the system. The
parameters are dimensionless and are chosen as V0=0.461, a0=1,
a1=0.245, a2=0.04, �=0.9, and D0=0.01. �a� and �b�: The phase
portrait when a=0. �a� �=0; �b� �=0.2. �c� and �d�: The phase
portrait when a=2.5. �c� �=0; �d� �=0.2.
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located at about a	6.0. As � is increased, there appears a
second peak at a smaller value of a and the height of the
peak at a	6.0 is decreased. As � is increased further, the
height of the peak at a small value of a is increased and the
peak at a	6.0 disappears. There appears another maximum
efficiency at a=0. It can be seen that the maximum effi-
ciency of the delayed Brownian motor can be increased with
increasing value of �. This may provide a profound way to
modify the delayed Brownian motor in order to obtain high
efficiency even when there is no external driving force.

Compared with the average velocity in Fig. 2, similar
shape in the rectification efficiency is obtained. The negative
extreme in Fig. 2 becomes a positive peak in Fig. 3 due to
the fact that the rectification efficiency defined by Eq. �3� is
a function of �v�2 and is always greater than zero.

IV. VELOCITY PROBABILITY DISTRIBUTION

The velocity probability distribution function P�v� is
plotted in Fig. 4 as a function of the velocity v and the
delay time �.

When there is no driving force with a=0, the velocity
probability distribution functions are plotted in Figs. 4�a� and
4�b� as functions of v and �. From Figs. 4�a� and 4�b�, it is
seen that one peak in the curve of P�v� is split to two peaks,
then to three peaks, and finally to four peaks when � is in-
creased. The width of the curve is broadened and the asym-
metry of the curve is enhanced as � is increased. For small
value of �=0.01, the curve of P�v� is symmetrically distrib-
uted at two sides of v=0. However, the increasing value of �
breaks the symmetry of the curve of P�v�. Both the location
and the height of the peaks in P�v� is changed. When the

delay time is increased to �=0.05, one sharp peak in P�v� is
split to two lower peaks that are asymmetrically located at
two sides of v=0. The peak at positive v is higher than that
at negative v. The curve of P�v� is broadened. When � is
increased to �=0.1, the two peaks in P�v� are split to three
peaks. The central peak is located at v=0. The curve of P�v�
is broadened further. The right peak is still higher than the
left one. When � is increased to �=0.2, the three peaks in
P�v� are split to four peaks located at two sides of v=0. The
curve of P�v� is broadened further. However, the two peaks
located at negative v are much higher than that at positive v.
It is seen that the velocity distribution P�v� has concentrated
mainly on one of the semiaxes for large delay time. Hence,
the current arises mainly due to the asymmetry of the veloc-
ity distribution function even there is no external driving
force.

When the driving force strength is a=2.5, the velocity
probability distribution functions are plotted in Figs. 4�c� and
4�d� as functions of v and �. From Figs. 4�c� and 4�d�, it is
seen that the asymmetry in the velocity distribution P�v� is
enhanced as � is increased. For small value of �=0.01, there
are two peaks in P�v� distributed at v= ±1.0. The right peak
is higher and narrower than the left one. As � is increased,
the peak at the negative side of v is decreased while the peak
at the positive side of v is increased. The location of the peak
at the positive side of v is shifted to a small value of v. The
whole curve is broadened. As � is increased further, the peak
at the negative side of v disappears and two peaks at the
positive side of v appear. The two peaks at the positive side
of v are increased as � is increased. The major peak is lo-
cated near v=0. The width of the curve P�v� is also reduced.
It is seen that the increasing delay time � can enhance the

FIG. 6. The dimensionless deterministic bifur-
cation diagrams of the velocity v are plotted as a
function of the delay time � and the angular
frequency � of the driving force. The parameters
are dimensionless and are chosen as V0=0.461,
a0=1, a1=0.245, a2=0.04, �=0.9, D0=0. �a� and
�b�: The bifurcation diagrams as a function of �
when �=4.9 for different values of a. �a� a=0;
�b� a=2.5. �c� and �d�: The bifurcation diagrams
as a function of � when a=2.5 for different val-
ues of �. �c� �=0; �d� �=0.2.
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asymmetry and sharpness in P�v� and thus increase the cur-
rent. It is also clear that the velocity distribution P�v� has
concentrated mainly on the positive axis of v due to effect of
the external load force and the increase of the delay time.

V. EFFECTS OF DELAYED TIME AND DRIVING
FORCE

For a better understanding of the action of the time
delay feedback and the driving force, the phase portrait
and the deterministic bifurcation of the system need to be
investigated.

The phase portraits of v versus x of the system are plotted
in Fig. 5. In Figs. 5�a� and 5�b�, the phase portraits are plot-
ted when there is no driving force with a=0. In Fig. 5�a�,
there is no time delay with �=0. From Fig. 5�a�, it is seen
that the particle is initially located near x=0 and then moves
towards negative x with decreased velocity magnitude �v�.
Then the velocity is reduced to zero and the particle dwells
in the potential well at x
−0.2. In Fig. 5�b�, the time delay
is �=0.2. From Fig. 5�b�, it is seen that the particle moves
towards negative x with negative velocity. The velocity v
oscillates between −0.25 and −1.75 quasi-periodically. It is
clear that the time delay can stimulate the particle to move
towards negative x quasi-periodically even though there is no
driving force. In Figs. 5�c� and 5�d�, the phase portraits are
plotted when the driving force is a=2.5. In Fig. 5�c�, there is
no time delay with �=0. From Fig. 5�c�, it is seen that the
particle is initially located near x=0 and then moves between
x=−0.6 and x=0. The velocity v is bounded between
v=1.25 and −1.25. In Fig. 5�d�, the time delay is �=0.2.
From Fig. 5�d�, it is seen that the particle moves towards
positive x under the influence of the driving force and the
time delay. The velocity v oscillates between 1.75 and 0.25
after the transient of x from zero.

There are three different time scales inherent in the sys-
tem, i.e., the intrinsic oscillation period without driving force
given by T0=2� / �Im �, where  is the complex eigenvalue
of the fixed point, the driving period T=2� /�, and the delay
time �. Though there is no analytic expression of the com-
plex eigenvalue , it can be numerically calculated through
Eq. �1�. The numerical value of  �for D0=a=�=0� is given
by =−p± iq
−0.3± i5.0. It would be interesting to look at
a wider range of values of � through the bifurcation diagrams
of vmax and vmin. Here, vmax and vmin are the maximum and
the minimum values of the velocity, respectively.

The bifurcation diagram of the deterministic system as a
function of the delay time � and the angular frequency � of
the driving force is plotted in Fig. 6. The bifurcation as a
function of � is plotted in Figs. 6�a� and 6�b�. In Fig. 6�a�,
there is no driving force with a=0. From Fig. 6�a�, it is seen
that the particle moves with regular velocity when ��0.55.
When ��0.55, the motion of the particle is chaotic.
However, around �
T0
1.26, there is a window that the
particle moves with regular velocity again. This is clearly
shown in the inset of Fig. 6�a�. In Fig. 6�b�, the driving force
is a=2.5. From Fig. 6�b�, it is seen that the motion of the
particle is regular when ��0.6. When ��0.6, the motion is
chaotic. There are no special features when �
T0
T. It

seems that the driving force can enhance the chaotic motion
of the particle. The bifurcation diagrams as a function of the
angular frequency � of the driving force are plotted in Figs.
6�c� and 6�d� when the driving force is a=2.5. In Fig. 6�c�,
there is no time delay with �=0. It is seen that the motion of
the particle is chaotic when ��q
5.0. When ��q, the
motion is regular. When � is very large, the velocity of the
particle tends to zero. In Fig. 6�d�, the time delay is �=0.2. It
is
clear that the motion of the particle is chaotic at most values
of �. However, the motion is regular at these windows of
���1+n /2�q, where n=0,1 ,2 , . . .. The first window that
the regular motion appears is around 4.75���5.25. This is
shown in the inset of Fig. 6�d�. It is seen that the delay time
can enhance the chaotic motion of the particle but can keep
the regularity at windows around ���1+n /2�q.

VI. DISCUSSION

The effects of the noise strength and the delay time on the
mean velocity and rectification efficiency of a Brownian in-
ertial motor driven by an unbiased monochromatic time-
periodic force are investigated. It is found that the mean
velocity and the rectification efficiency are decreased when
the value of white noise intensity D0 is increased. When the
delay time � is increased, both the height and the number of
peaks in the velocity and the efficiency can be varied. It is
very interesting to note that the symmetry of the velocity
distribution is broken when the value of delay time � is in-
creased. That is, the delay time can induce asymmetry in the
velocity probability distribution function and increase the
current and the efficiency in the system.

Recently, some simple models of time-delay feedback
control of noise-induced oscillations have been investigated
�4,5�. The analytical tools of mean-field approximation were
developed for delay-differential equations, such as for the
Van de Pol system. It is found that the modulation of some
features with delay time � has been associated with the local
stability �eigenmodes� of the fixed point. The regularity of
the noise-induced motion can be either increased or de-
creased by choosing proper value of time delay. The analyti-
cal tools �4,5,7–10� are difficult to apply in the model of Eq.
�1�. However, some similar features �4,5� have also been
found in the Brownian motor with time-delayed feedback
presented in this paper. When there is no driving force with
a=0, the time delay can stimulate the particle to move to-
wards negative direction. The regular motion of the particle
appears for small delay time and appears again when the
delay time is close to the intrinsic period T0. For large delay
time, the motion of the particle is chaotic. While there is a
driving force, the time delay can induce positive motion of
the particle. The delay time can enhance the chaotic motion
but can keep the regularity when the driving frequency � is
close to �1+n /2� of the intrinsic oscillation frequency q.
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